Accu-Tell, Covid-19 IgG/IgM, 25 test
To Order Contact us: lieven@wlsolutions.be
NOVATest IgG/IgM Antibody Rapid Test Kit (NOVA Test) |
||
UNCOV-40 | 40 Tests | EUR 115 |
Human Cytomegalovirus IgG / IgM, Toxoplasma IgG / IgM, Rubella IgG Rapid Test Kit |
||
abx092078-20tests | 20 tests | EUR 410.4 |
COVID-19 Nucleocapsid recombinant antigen |
||
00221-V-100ugvial | 100 ug/vial | EUR 150 |
Description: COVID-19 Nucleocapsid recombinant antigen |
Biocredit Covid-19 Ag Detection Kit |
||
G61RHA20 | 20 test cards (pkg) | EUR 114 |
COVID-19 Spike Protein a.a. 1000-12000 |
||
00223-V-100ugvial | 100 ug/vial | EUR 150 |
Description: COVID-19 Spike Protein a.a. 1000-12000 |
SARS-CoV-2 (COVID-19) NSP7 Peptide |
||
9155P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP7 Peptide |
SARS-CoV-2 (COVID-19) NSP8 Peptide |
||
9159P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP8 Peptide |
SARS-CoV-2 (COVID-19) NSP9 Peptide |
||
9161P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP9 Peptide |
SARS-CoV-2 (COVID-19) NSP9 Peptide |
||
9163P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP9 Peptide |
SARS-CoV-2 (COVID-19) NSP8 Peptide |
||
9167P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP8 Peptide |
SARS-CoV-2 (COVID-19) NSP2 Peptide |
||
9171P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP2 Peptide |
SARS-CoV-2 (COVID-19) NSP2 Peptide |
||
9173P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP2 Peptide |
SARS-CoV-2 (COVID-19) NSP4 Peptide |
||
9175P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP4 Peptide |
SARS-CoV-2 (COVID-19) NSP6 Peptide |
||
9177P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP6 Peptide |
SARS-CoV-2 (COVID-19) ORF6 Peptide |
||
9189P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF6 Peptide |
SARS-CoV-2 (COVID-19) ORF8 Peptide |
||
9287P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF8 Peptide |
SARS-CoV-2 (COVID-19) ORF8 Peptide |
||
9289P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF8 Peptide |
Human Hantavirus (HV) IgM / IgG Rapid Test Kit |
||
abx092094-20tests | 20 tests | EUR 326.4 |
SARS-CoV-2 (COVID-19) NSP7 Antibody |
||
9155-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers. |
SARS-CoV-2 (COVID-19) NSP7 Antibody |
||
9155-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers. |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
||
9159-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
||
9159-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
||
9161-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
||
9161-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
||
9163-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
||
9163-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
||
9167-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
||
9167-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
||
9171-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
||
9171-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
||
9173-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
||
9173-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP4 Antibody |
||
9175-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4). |
SARS-CoV-2 (COVID-19) NSP4 Antibody |
||
9175-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4). |
SARS-CoV-2 (COVID-19) NSP6 Antibody |
||
9177-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4). |
SARS-CoV-2 (COVID-19) NSP6 Antibody |
||
9177-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4). |
SARS-CoV-2 (COVID-19) NSP10 Peptide |
||
9179P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP10 Peptide |
SARS-CoV-2 (COVID-19) ORF6 Antibody |
||
9189-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF6 disrupts cell nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of transport into the nucleus. Thereby it prevents STAT1 nuclear translocation in response to interferon signaling, thus blocking the expression of interferon stimulated genes (ISGs) that display multiple antiviral activities(3). |
SARS-CoV-2 (COVID-19) ORF6 Antibody |
||
9189-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF6 disrupts cell nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of transport into the nucleus. Thereby it prevents STAT1 nuclear translocation in response to interferon signaling, thus blocking the expression of interferon stimulated genes (ISGs) that display multiple antiviral activities(3). |
SARS-CoV-2 (COVID-19) ORF9b Peptide |
||
9191P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF9b Peptide |
SARS-CoV-2 (COVID-19) ORF3a Peptide |
||
9275P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF3a Peptide |
SARS-CoV-2 (COVID-19) ORF3b Peptide |
||
9277P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF3b Peptide |
SARS-CoV-2 (COVID-19) ORF3b Peptide |
||
9279P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF3b Peptide |
SARS-CoV-2 (COVID-19) ORF3b Peptide |
||
9281P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF3b Peptide |
SARS-CoV-2 (COVID-19) ORF7a Peptide |
||
9283P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF7a Peptide |
SARS-CoV-2 (COVID-19) ORF7a Peptide |
||
9285P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF7a Peptide |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
||
9287-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
||
9287-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
||
9289-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF8 Antibody |
||
9289-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF8 may play a role in modulating host immune response (Probable). May play a role in blocking host IL17 cytokine by its interaction with host IL17RA (3). |
SARS-CoV-2 (COVID-19) ORF9c Peptide |
||
9291P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF9c Peptide |
SARS-CoV-2 (COVID-19) ORF10 Peptide |
||
9293P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) ORF10 Peptide |
SARS-CoV-2 (COVID-19) Spike Antibody |
||
3525-002mg | 0.02 mg | EUR 206.18 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody |
||
3525-01mg | 0.1 mg | EUR 523.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) NSP10 Antibody |
||
9179-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3). |
SARS-CoV-2 (COVID-19) NSP10 Antibody |
||
9179-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3). |
SARS-CoV-2 (COVID-19) ORF9b Antibody |
||
9191-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF9b plays a role in the inhibition of host innate immune response by targeting the mitochondrial-associated adapter MAVS. Mechanistically, it usurps the E3 ligase ITCH to trigger the degradation of MAVS, TRAF3, and TRAF6. In addition, it causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1/DNM1L(3). |
SARS-CoV-2 (COVID-19) ORF9b Antibody |
||
9191-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF9b plays a role in the inhibition of host innate immune response by targeting the mitochondrial-associated adapter MAVS. Mechanistically, it usurps the E3 ligase ITCH to trigger the degradation of MAVS, TRAF3, and TRAF6. In addition, it causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1/DNM1L(3). |
SARS-CoV-2 (COVID-19) NSP12 Antibody |
||
9267-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP12 interacts with nsp7 and nsp8. |
SARS-CoV-2 (COVID-19) NSP12 Antibody |
||
9267-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP12 interacts with nsp7 and nsp8. |
SARS-CoV-2 (COVID-19) NSP15 Antibody |
||
9269-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP15 is a Mn2+-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. |
SARS-CoV-2 (COVID-19) NSP15 Antibody |
||
9269-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP15 is a Mn2+-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. |
SARS-CoV-2 (COVID-19) NSP16 Antibody |
||
9271-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Methyltransferase mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system. |
SARS-CoV-2 (COVID-19) NSP16 Antibody |
||
9271-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Methyltransferase mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system. |
SARS-CoV-2 (COVID-19) ORF3a Antibody |
||
9275-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF3a forms homotetrameric potassium sensitive ion channels (viroporin) and may modulate virus release. It up-regulates expression of fibrinogen subunits FGA, FGB and FGG in host lung epithelial cells. It induces apoptosis in cell culture and downregulates the type 1 interferon receptor by inducing serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1) degradation motif and increasing IFNAR1 ubiquitination (3). |
SARS-CoV-2 (COVID-19) ORF3a Antibody |
||
9275-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF3a forms homotetrameric potassium sensitive ion channels (viroporin) and may modulate virus release. It up-regulates expression of fibrinogen subunits FGA, FGB and FGG in host lung epithelial cells. It induces apoptosis in cell culture and downregulates the type 1 interferon receptor by inducing serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1) degradation motif and increasing IFNAR1 ubiquitination (3). |
SARS-CoV-2 (COVID-19) ORF3b Antibody |
||
9277-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF3b, ORF9b, ORF9c and ORF10. ORF3b may play a role in interferon antiviral system evasion (3). |
SARS-CoV-2 (COVID-19) ORF3b Antibody |
||
9277-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF3b, ORF9b, ORF9c and ORF10. ORF3b may play a role in interferon antiviral system evasion (3). |
SARS-CoV-2 (COVID-19) ORF3b Antibody |
||
9279-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF3b, ORF9b, ORF9c and ORF10. ORF3b may play a role in interferon antiviral system evasion (3). |
SARS-CoV-2 (COVID-19) ORF3b Antibody |
||
9279-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF3b, ORF9b, ORF9c and ORF10. ORF3b may play a role in interferon antiviral system evasion (3). |
SARS-CoV-2 (COVID-19) ORF3b Antibody |
||
9281-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF3b, ORF9b, ORF9c and ORF10. ORF3b may play a role in interferon antiviral system evasion (3). |
SARS-CoV-2 (COVID-19) ORF3b Antibody |
||
9281-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF3b, ORF9b, ORF9c and ORF10. ORF3b may play a role in interferon antiviral system evasion (3). |
SARS-CoV-2 (COVID-19) ORF7a Antibody |
||
9283-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF7a and ORF7a. ORF7a plays a role as antagonist of host tetherin (BST2), disrupting its antiviral effect. It acts by binding to BST2 thereby interfering with its glycosylation. It may suppress small interfering RNA (siRNA) and may bind to host ITGAL, thereby playing a role in attachment or modulation of leukocytes (3). |
SARS-CoV-2 (COVID-19) ORF7a Antibody |
||
9283-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF7a and ORF7a. ORF7a plays a role as antagonist of host tetherin (BST2), disrupting its antiviral effect. It acts by binding to BST2 thereby interfering with its glycosylation. It may suppress small interfering RNA (siRNA) and may bind to host ITGAL, thereby playing a role in attachment or modulation of leukocytes (3). |
SARS-CoV-2 (COVID-19) ORF7a Antibody |
||
9285-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF7a and ORF7a. ORF7a plays a role as antagonist of host tetherin (BST2), disrupting its antiviral effect. It acts by binding to BST2 thereby interfering with its glycosylation. It may suppress small interfering RNA (siRNA) and may bind to host ITGAL, thereby playing a role in attachment or modulation of leukocytes (3). |
SARS-CoV-2 (COVID-19) ORF7a Antibody |
||
9285-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF7a and ORF7a. ORF7a plays a role as antagonist of host tetherin (BST2), disrupting its antiviral effect. It acts by binding to BST2 thereby interfering with its glycosylation. It may suppress small interfering RNA (siRNA) and may bind to host ITGAL, thereby playing a role in attachment or modulation of leukocytes (3). |
SARS-CoV-2 (COVID-19) ORF9c Antibody |
||
9291-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF9c may play a role in host-virus interaction. |
SARS-CoV-2 (COVID-19) ORF9c Antibody |
||
9291-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. ORF9c may play a role in host-virus interaction. |
SARS-CoV-2 (COVID-19) ORF10 Antibody |
||
9293-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF10 and ORF10. |
SARS-CoV-2 (COVID-19) ORF10 Antibody |
||
9293-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). SARS-CoV-2 virus proteins include structural proteins, non-structural proteins and accessory factors. The structure of SARS-CoV-2 consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. SARS-CoV-2 non-structural protein is ORF1ab that consists of 16 proteins (nsp1-nsp16), while accessory factors include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF10 and ORF10. |
SARS-CoV-2 (COVID-19) Membrane Peptide |
||
9157P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) Membrane Peptide |
SARS-CoV-2 (COVID-19) Membrane Peptide |
||
9165P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) Membrane Peptide |
SARS-CoV-2 (COVID-19) Envelope Peptide |
||
9169P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) Envelope Peptide |
SARS-CoV-2 (COVID-19) Envelope Antibody |
||
3531-002mg | 0.02 mg | EUR 206.18 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Envelope Antibody |
||
3531-01mg | 0.1 mg | EUR 523.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Membrane Antibody |
||
9157-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Antibody |
||
9157-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Antibody |
||
9165-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Antibody |
||
9165-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Envelope Antibody |
||
9169-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Envelope Antibody |
||
9169-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3). |
COVID-19 Spike Protein a.a. 800 to 1000 |
||
00222-V-100ugvial | 100 ug/vial | EUR 150 |
Description: COVID-19 Spike Protein a.a. 800 to 1000 |
SARS-CoV-2 (COVID-19) Nucleocapsid Antibody |
||
9099-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6). |
SARS-CoV-2 (COVID-19) Nucleocapsid Antibody |
||
9099-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6). |
SARS-CoV-2 (COVID-19) Nucleocapsid Antibody |
||
9103-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6). |
SARS-CoV-2 (COVID-19) Nucleocapsid Antibody |
||
9103-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6). |
SARS-CoV-2 (COVID-19) Spike S1 Antibody |
||
9083-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S1 Antibody |
||
9083-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
||
9119-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
||
9119-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
||
9123-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike S2 Antibody |
||
9123-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (HRP) |
||
3525-HRP-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (HRP) |
||
3525-HRP-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody |
||
9087-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike RBD Antibody |
||
9087-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike 681P Antibody |
||
9091-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike 681P Antibody |
||
9091-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) NSP14 (ExoN) Peptide |
||
9185P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP14 (ExoN) Peptide |
SARS-CoV-2 (COVID-19) NSP14 (ExoN) Peptide |
||
9187P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP14 (ExoN) Peptide |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
||
MPS-0001 | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
||
MPS-0002 | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
||
MPS-0003 | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
||
MPS-0004 | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Matched Pair |
||
MPS-0005 | 1 Set | EUR 1029.3 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) NSP14 (ExoN) Antibody |
||
9185-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP14 (ExoN) is an enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (3,4,5). It acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens(6,7,8). |
SARS-CoV-2 (COVID-19) NSP14 (ExoN) Antibody |
||
9185-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP14 (ExoN) is an enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (3,4,5). It acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens(6,7,8). |
SARS-CoV-2 (COVID-19) NSP14 (ExoN) Antibody |
||
9187-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP14 (ExoN) is an enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (3,4,5). It acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens(6,7,8). |
SARS-CoV-2 (COVID-19) NSP14 (ExoN) Antibody |
||
9187-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP14 (ExoN) is an enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (3,4,5). It acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens(6,7,8). |
SARS-CoV-2 (COVID-19) 3C-like Proteinase |
||
10-116 | 0.1 mg | EUR 726.9 |
Description: SARS-CoV-2 (COVID-19) 3C-like Proteinase |
SARS-CoV-2 (COVID-19) Spike Antibody (biotin) |
||
3525-biotin-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Spike Antibody (biotin) |
||
3525-biotin-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6). |
SARS-CoV-2 (COVID-19) Envelope Antibody (HRP) |
||
3531-HRP-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Envelope Antibody (HRP) |
||
3531-HRP-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Membrane Antibody (HRP) |
||
9157-HRP-002mg | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Antibody (HRP) |
||
9157-HRP-01mg | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
COVID-19 Spike S1 protein a.a. 1 to 800 |
||
00226-V-100ugvial | 100 ug/vial | EUR 150 |
Description: COVID-19 Spike S1 protein a.a. 1 to 800 |
SARS-CoV-2 (COVID-19) Papain-like Protease |
||
10-119 | 0.1 mg | EUR 651.3 |
Description: SARS-CoV-2 (COVID-19) Papain-like Protease |
SARS-CoV-2 (COVID-19) S1 Recombinant Protein |
||
10-409 | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S1 Recombinant Protein |
||
10-422 | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S1 Recombinant Protein |
||
10-423 | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2(COVID-19) S1 Recombinant Protein |
||
10-424 | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S2 Recombinant Protein |
||
10-426 | 0.1 mg | EUR 651.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S1 Recombinant Protein |
||
10-428 | 0.1 mg | EUR 651.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) M Recombinant Protein |
||
10-429 | 0.1 mg | EUR 651.3 |
Description: Membrane glycoprotein is involved in the formation and budding of the viral envelope, that is, in the assembly and release of the virus, inhibiting IFN attack. |
SARS-CoV-2 (COVID-19) E Recombinant Protein |
||
11-072 | 0.1 mg | EUR 695.4 |
Description: Coronavirus envelope (E) proteins are short (100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions, plays a central role in virus morphogenesis and assembly. Acts as a viroporin and self-assembles in host membranes forming pentameric protein-lipid pores that allow ion transport. Also plays a role in the induction of apoptosis. Activates the host NLRP3 inflammasome, leading to IL-1beta overproduction. |
SARS-CoV-2 (COVID-19) S2 Recombinant Protein |
||
11-184 | 0.2 mg | EUR 1212 |
Description: It's been reported that SARS-CoV-2 can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) NSP13 (Helicase) Peptide |
||
9181P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP13 (Helicase) Peptide |
SARS-CoV-2 (COVID-19) NSP13 (Helicase) Peptide |
||
9183P | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP13 (Helicase) Peptide |
SARS-CoV-2 (COVID-19) S1 Recombinant Protein |
||
97-086 | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, DPP4, CEACAM etc.. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S1 Recombinant Protein |
||
97-087 | 0.1 mg | EUR 752.1 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, DPP4, CEACAM etc.. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |